Additive decompositions of θ-functions of multiple arguments

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 153439
(http://iopscience.iop.org/0305-4470/15/11/020)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 15:01

Please note that terms and conditions apply.

Additive decompositions of $\boldsymbol{\theta}$-functions of multiple arguments

M Boon†, M L Glasser \ddagger, J Zak§ and I J Zucker||
\dagger Institute for Theoretical Physics, University of Nijmegen, The Netherlands
\ddagger Department of Mathematics, Clarkson College, Potsdam, NY, USA
§Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel
${ }^{1}$ Department of Physics, University of Surrey, Guildford, England

Received 1 June 1982

Abstract

Product decompositions of θ-functions of multiple argument are well known in the literature of the subject. Here, additive decompositions are presented.

θ-functions were first introduced by Jacobi as a means of calculating elliptic functions. They are functions of a complex variable, z, and a parameter $q=e^{i \pi \tau}$. They are denoted here $\theta(z \mid \tau)$. Four types of θ-function were considered by Jacobi, and both infinite product and infinite series representations of each θ-function are known (Whittaker and Watson 1958), e.g.

$$
\begin{equation*}
\theta_{4}(z \mid \tau)=Q_{0} \prod_{1}^{\infty}\left(1-2 q^{2 r-1} \cos 2 z+q^{4 r-2}\right)=\sum_{-\infty}^{\infty}(-1)^{r} q^{r^{2}} \cos 2 r z \tag{1}
\end{equation*}
$$

where $Q_{0}=\prod_{1}^{\infty}\left(1-q^{2 r}\right)$.
The decomposition of θ-functions of multiple argument into products of θ-functions of simpler argument is well (if not widely) known. They may be found in standard treatises, e.g. Tannery and Molk (1972). For example

$$
\begin{equation*}
\theta_{4}(n z \mid n \tau)=Q_{0}\left(q^{n}\right) \prod_{1}^{\infty}\left(1-2 q^{(2 r-1) n} \cos 2 n z+q^{(4 r-2) n}\right) \tag{2}
\end{equation*}
$$

Now by a theorem of Cotes

$$
\begin{equation*}
\left(1-2 q^{(2 r-1) n} \cos 2 n z+q^{(4 r-2) n}\right)=\prod_{s=0}^{n-1}\left(1-2 q^{2 r-1} \cos (2 z+2 s \pi / n)+q^{4 r-2}\right] . \tag{3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\theta_{4}(n z \mid n \tau)=\frac{Q_{0}\left(q^{n}\right)}{Q_{0}^{n}} \prod_{s=0}^{n-1} \theta_{4}\left(\left.z+\frac{s \pi}{n} \right\rvert\, \tau\right) . \tag{4}
\end{equation*}
$$

Similar results may be obtained for θ_{1}, θ_{2} and θ_{3}, and all may be summarised in the one equation

$$
\begin{align*}
& \theta_{\mu}(n z \mid n \tau)=\frac{Q_{0}\left(q^{n}\right)}{Q_{0}^{n}} \prod_{s=\alpha}^{s=\beta} \theta_{\mu}\left(\left.z+\frac{s \pi}{n} \right\rvert\, \tau\right), \tag{5}\\
& \begin{array}{l}
\left.\left.\begin{array}{l}
\alpha=0 \\
\beta=n-1
\end{array}\right\} \mu=1,4, \quad \begin{array}{l}
\alpha=-(n-1) / 2 \\
\beta=(n-1) / 2
\end{array}\right\} \mu=2,3 .
\end{array}
\end{align*}
$$

These results may be regarded as the elliptic function analogues of the Cotes identities for the circular functions, e.g.

$$
\begin{equation*}
\sin n z=2^{n-1} \prod_{s=0}^{n-1} \sin (z+s \pi / n) \tag{6}
\end{equation*}
$$

In a recent investigation of rational von Neumann lattices (Boon et al 1982), the decription of harmonic oscillator states on such lattices using the $k q$-representation (Zak 1968) led to an additive decomposition of $\theta_{3}(n z \mid n \tau)$. This was

$$
\begin{equation*}
n \theta_{3}(n z \mid n \tau)=\sum_{s=0}^{n-1} \theta_{3}\left(\left.z+\frac{s \pi}{n} \right\rvert\, \frac{\tau}{n}\right) . \tag{7}
\end{equation*}
$$

Corresponding results for the other θ-functions are

$$
\left.\begin{array}{l}
n \theta_{4}(n z \mid n \tau)=\sum_{s=0}^{n-1} \theta_{3}\left(\left.z+(2 s+1) \frac{\pi}{n} \right\rvert\, \frac{\tau}{n}\right) \\
n \theta_{1}(n z \mid n \tau)=\sum_{s=0}^{n-1}(-1)^{s} \theta_{3}\left(\left.z+(2 s+1) \frac{\pi}{n} \right\rvert\, \frac{\tau}{n}\right) \\
n \theta_{2}(n z \mid n \tau)=\sum_{s=0}^{n-1}(-1)^{s} \theta_{3}\left(\left.z+\frac{s \pi}{n} \right\rvert\, \frac{\tau}{n}\right) \tag{8}
\end{array}\right\}
$$

We have not been able to find these results in any standard text on θ-functions, and thus present them here.

Simple direct proofs of these results may be obtained from the definitions of θ-functions as infinite series. Thus (7) may be derived as follows:

$$
\theta_{3}(z \mid \tau)=\sum_{-\infty}^{\infty} q^{r^{2}} \cos 2 r z=\sum_{-\infty}^{\infty} \exp \left(\mathrm{i} \pi r^{2} \tau\right) \exp (2 \mathrm{i} r z)
$$

Hence $\sum_{s=0}^{n-1} \theta_{3}\left(\left.z+\frac{s \pi}{n} \right\rvert\, \frac{\tau}{n}\right)=\sum_{-\infty}^{\infty} \exp \left(\mathrm{i} \pi r^{2} \frac{\tau}{n}+2 \mathrm{i} r z\right) \sum_{s=0}^{n-1} \exp \left(\frac{2 \mathrm{i} r s \pi}{n}\right)$

$$
\begin{align*}
& =\sum_{-\infty}^{\infty} \exp \left(\frac{\mathrm{i} \pi r^{2} \tau}{n}+2 \mathrm{i} r z\right)\left(n \sum_{m=-\infty}^{\infty} \delta_{r, m n}\right) \\
& =n \sum_{m=-\infty}^{\infty} \exp \left(\mathrm{i} \pi m^{2} n \tau+2 \mathrm{i} m n z\right)=n \theta_{3}(n z \mid n \tau) . \tag{9}
\end{align*}
$$

It seems possible that similar additive decompositions might be found for powers of θ-functions by using various Jacobi identities. Thus one has

$$
\begin{equation*}
2 n \theta_{3}(0 / \tau) \theta_{3}\left(n z \mid n^{2} \tau\right)=\sum_{s=0}^{2 n-1} \theta_{3}^{2}\left(\left.\frac{z}{2}+\frac{s \pi}{2 n} \right\rvert\, \frac{\tau}{2}\right) . \tag{10}
\end{equation*}
$$

No doubt many other such identities may be formulated.

References

