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Abstract. Product decompositions of 8-functions of multiple argument are well known 
in the literature of the subject. Here, additive decompositions are presented. 

8-functions were first introduced by Jacobi as a means of calculating elliptic functions. 
They are functions of a complex variable, t ,  and a parameter q = eiirr. They are 
denoted here @(ZIT). Four types of @-function were considered by Jacobi, and both 
infinite product and infinite series representations of each @-function are known 
(Whittaker and Watson 1958), e.g. 
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1 -m 
0 4 ( t 1 ~ )  = Qon(1 -2q2'-' cos 22 +q4r-2) = 1 (-1)"'' cos 2rt (1) 

m 
where QO = n (1 - q2'). 
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The decomposition of 8 -functions of multiple argument into products of @-functions 
of simpler argument is well (if not widely) known. They may be found in standard 
treatises, e.g. Tannery and Molk (1972). For example 

Now by a theorem of Cotes 
n-1 

COS 2nt +q(4r -2 )n )  = n (1 -2q2'-' cos (22 + 2s.rr/n) + q4r-2]. (1 -2q'2'-1'n (3) s=o 
Hence 

Similar results may be obtained for el, O2 and e3, and all may be summarised in the 
one equation 

CL = 2,3. I CY = -(n - 1)/2 
p = (n  - 1)/2 

p = n - 1  ] ,=i,4,  
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These results may be regarded as the elliptic function analogues of the Cotes identities 
for the circular functions, e.g. 

n-1  

s = o  
sin nz = 2"-' n sin ( z  + sr/n ). (6 )  

In a recent investigation of rational von Neumann lattices (Boon et a1 1982), the 
decription of harmonic oscillator states on such lattices using the kq -representation 
(Zak 1968) led to an additive decomposition of O3(nr lnT). This was 

Corresponding results for the other 8-functions are 

We have not been able to find these results in any standard text on 8-functions, and 
thus present them here. 

Simple direct proofs of these results may be obtained from the definitions of 
@-functions as infinite series. Thus ( 7 )  may be derived as follows: 

m cc 
e3(z I T )  = C q r 2  cos 2rz = exp ( i r2 . r )  exp (2ir.z). 

-m -m 

2irs-n- n - 1  n-1 

s=o  
2irz 

2 

= - E exp (?+ 2irz) (n  m=-m 2 s,,,) 
m 

It seems possible that similar additive decompositions might be found for powers of 
@-functions by using various Jacobi identities. Thus one has 

No doubt many other such identities may be formulated. 
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